Position Open

Prof. T. N. Guru Row


Internal IISc Web:    
Tel:  +91(0) 80 22932796
        +91 (0) 80 22932336 Extn 2027             
Lab: +91(0) 80 22932336 Extn. 2008, 2011, 202

Chemical Crystallography and Materials Design

  • High resolution non ambient X-ray diffraction studies aimed at understanding the nature of chemical bonding on a quantitative basis forms the central theme of research of our group. The offshoot of such studies generate design elements required for realizing components which could be put to practice to obtain novel functional materials. The phase behavior of such materials (both organic and inorganic origin) offers to generate a variety of hitherto unexplored materials.
  • Experimental and theoretical charge density studies provide a quantitative basis to unravel intra- and intermolecular interactions involving group IV to group VII elements in terms of the so called <93>sigma- hole formalism<94> . The topological analysis followed by interaction energy calculations point to a common platform for all such intermolecular interactions, for example halogen bonding, chalcogen bonding, pnicogen bonding and carbon bonding.
  • Studies using variable temperature X-ray diffraction techniques on selected hydrated minerals offer an understanding of phase separation upon dehydration leading to (i) generation of futuristic materials and (ii) pathways of mineral evolution.
  • Exploring cocrystals of small organic molecules (i) for applications as futuristic materials and (ii) as augments for better performance of active pharmaceutical ingredients (API<92>s) is an active area pursued in our group.
  • Design of small molecule inhibitors (potent and highly selective) to block C-Jun-N-terminal Kinase (a key component in the cell signaling pathway) as a preliminary step to prevent cancer proliferation in cells is being pursued in collaboration with biological sciences division.
  • In situ cryo crystallography techniques are employed to obtain useful hints on polymorphism, polytypism in molecular crystals, which are necessary inputs to unravel pathways to crystal growth mechanisms.
  • Representative publications

    • Thomas, S. P.; Pavan, M. S; Guru Row, T. N. Chem. Commun. 2014, 50, 49.
    • Pavan, M. S.; Durga, P. K.; Guru Row, T. N. Chem. Commun. 2013, 49, 7558.
    • Dikundwar, A. G.; Venkateswarlu, C.; Chandrakala, R. N.; Chandrasekaran, S.;Guru Row, T. N. CrystEngComm. 2013, 15, 4871.
    • Sharma, V. M.; Saha, D.; Madras, G.;Guru Row, T. N. RSC Advances 2013, 3, 18938.
    • Saha, D.; Ranjan, R.; Swain, D.; Narayana, C.;Guru Row, T. N. Dalton Trans. 2013, 42, 7672.
    • Thomas, S. P.; Nagarajan, K.;Guru Row, T. N. Chem. Commun. 2012, 48, 10559.
    • Kaur, R.;Guru Row, T. N. Cryst. Growth Des. 2012, 12, 2744.

    Designed By: Vision Group